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Abstract Modeling tradition is reviewed within its his-

torical maturity from Plato do Penrose. Metaphors in

nonisothermal kinetics achieved a wide application mostly

employing models derived by means of undemanding

isothermal descriptions. Geometrical basis of such model-

ing is revised and discussed in terms of symmetrical and

asymmetrical (pentagonal) schemes. The properties of

interface (reaction separating line) are found decisive in all

cases of heterogeneous kinetics. Application of fractal

geometry is accredited, and associated formal kinetic

models based on nonintegral power exponents are

acknowledged. Typical erroneous beliefs are dealt with

showing common kinetic misinterpretation of measured

data and associated mathematical manipulability of kinetic

equations. The correction of a measured DTA peak is

mentioned assuming the effects of heat inertia and tem-

perature gradients.
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Introduction

More than a quarter century ago, I published in this journal

a discussion article on kinetic evaluations [1] emphasizing

various questions, which is not worth to repeat even if

many of inquires have remained unanswered [2–5]. Since

then, many thousands of articles were published showing

that the kinetic subject has persisted to be the best cited

area in thermal analysis [6]. Albeit being a doyen of such a

novel [7–13] and now cross-boundary research area [14], I

was proud that I was given yet another space to revaluate

and reassume my standpoints toward the thermal analysis

kinetics, the subject thoroughly explored in my books

[14–19]. Nonetheless, I have decided to do it in a more

generalized way pointing out the pitfalls and yet unac-

cepted site issues to show different ways of possible and

untraditional assessments even falling back upon the

beliefs of Greek philosophers [18, 19].

Some philosophical thoughts on a general exercise

toward mathematical models

The four basic elements fire, air, earth, and water (intro-

duced by Empedocles 492–432) were the first known

models and metaphors to signify the substantiality of which

all subsistence is composed (i.e., quantities as well as

interconnecting qualities like warmness, dryness, coldness,

and humidity). They were thought to possess the integra-

tive and structural essence ether or better form in the sense

of an imperishable firmament (which in the modern world

is interpreted as in-form-ation) [18, 19]. Today however,

mathematical modeling ensues differently not only from a

further approved physical existence but also from an

existence that is assigned by our more cultured mental
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perceptions. It is not just the precision but also the subtle

sophistication and mathematical beauty of successful

models that is profoundly mysterious. Mathematics is

crucially concerned about truth and philosophers would

agree that there are some other fundamental (almost

absolute) concerns, namely that of beauty and of good,

which exist since the Platonic geometrical world of math-

ematical forms [20].

The early modeling elements were first depicted by the

metaphors of simple, equilateral triangles either pointing

up, in order to escape like air or fire, or down, to rest like

water or earth. Later Plato (427–347) used more explicit

geometrical models spatially arranging multiple triangles,

i.e., 3 triangles formed tetrahedron (*fire), 8 triangles—

octahedron (*air), 6 squares or 12 triangles—cube

(*earth). Water, however, was represented by a more

complex geometrical body called icosahedra (20 triangles,

cf. Fig. 1). In Greek culture the term symmetry was

interpreted as the harmony of different parts of an object.

Symmetria (*common measure) is composed of the prefix

sym (*common) and metres (*measure). The Greek

Gaius Plinius Secundus (23–79) provided the early funda-

ment for crystallography (derived from Greek cristallos =

piece of ice) as he gave primary rules for the plan-metric

faces of crystals and their visually imagery shaping.

However, the most impressive historical treatise on

crystallography was written by Johann Kepler (1571–1612),

while residing in Prague (during 1600–1612), and was

devoted to the description of snowflakes. In analyzing their

numerous forms bearing a steady hexagonal symmetry,

Kepler suggested a certain generalization model for the

densest arrangement of rigid balls. Factually, he introduced

the coordination-like number for a ball environment and

declared the consistency of angles between analogical

crystal planes and edges. It can be assumed that some

implication of Platonian geometry was also inherent in

Kepler’s applications [20]. Though Auguste Bravais

(1811–1863) was not sure that crystals are internally

arranged in a repeatable manner, he mathematically mod-

eled the 14 geometrical figures which can be spatially

arranged in a periodic mode [20–22]. They can be charac-

terized by a combination of one or more rotations and

inversions in a lattice that is understood as a regular array of

discrete points representing individual structural units

(atoms, molecules, species, etc.), which thus appear exactly

the same when viewed from any point of the array [20]. This

discovery allows us to classify crystal shapes nowadays in

the seven geometrically basic schemes: area and/or space

can be filled completely and symmetrically with tiles of

three, four, and six sides. This is close to the Platonian

conceptions of geometrical bodies but excludes, however,

any pentagonal arrangement (also involved in the early

Platonic bodies) because it is not possible to fill any area

completely with its fivefold symmetry. In the early 1970s,

however, Roger Penrose (1931–) discovered that a surface

can be wholly tiled in an asymmetrical but non-repeating

manner [21, 22] providing some constructions similar to the

cluster structure of liquid water [23] or glassy state of non-

crystalline materials (like metallic glasses), which has been

for a long run in the core of attention [19], see Fig. 1.

These relations can be followed far back to history when

the geometry of pentagon (and the pentagram inscribed

within it) bore its high metaphysical association as explored

by the Pythagoreans (after Pythagoras 586–506): they

considered it as an emblem of perfection. It was a doctrine

that all things compose and proceed from numbers and the

middle number five, as being formed by the union of the odd

and the first event was deemed of a peculiar value. In China,

the central number five, similarly, represented the fifth

additional element—the earth as the allied symbol of the

great China [18, 19]. In astrology, geometrical figures kept

engendering mystical and occult connotations such as with

the supposed magical powers of pentagons and pentagrams.

This effect lasted until recently as various occult guilds are

often symbolized by five leave rose.

One consequence is the way how we fragment real-world

entities into several categories [20]: things, events, and

processes. By things, we typically mean those entities which

are separable, with identifiable shapes and size, and which

persist in time. Events, on the other hand, have a relatively

short duration and are composed of the interactions of sev-

eral things of various sizes. Processes are, in this last

property, similar to events but, like things, have a relatively

long duration. However, many other entities may have a

transient character, such as vortices, flames, clouds, sounds,

ceremonies, etc. There is an obvious difference between

generic categories and particular entities because a category

may be scale-thin in two different ways: generically (atoms,

birds, etc.) or individually (geometrical concepts, etc.).

In the case of complex objects, there is a close rela-

tionship between their distribution over scales and a hier-

archy of their structural, functional, and describable levels.

We tend to assign objects of our concern into structural

levels and events as well as processes into functional lev-

els. Obvious differences of individual levels yield different

descriptions, different terminologies (or languages), and

eventually different disciplines. Two types of difficulty,

however, emerge, one caused by our limited understanding

of whether and how distinct levels of a system can directly

interact and, the other, related to the communication

(words) barriers developed over decades of specialization

of scientific disciplines [24] (providing the urgent need for

a topic interdisciplinarity).

One of the first mathematical theories in science that

dealt with inter-level interactions was Boltzmann’s statis-

tical physics, which is related to thermodynamics and the
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study of collective phenomena. It succeeded in eliminating

the lower (microscopic) level from the macroscopic laws

by decomposing the phase space to what is considered

macroscopically relevant subsets and by introducing new

concepts, such as the mannered entropy principle. It

requested to widely adopt the function of logarithm that

was already and perpetually accustomed by nature alone

(physiology, and psychology [18]). In comparison, another

scaled sphere of a natural process can be mentioned here

where the gradual evolution of living parts has been

matured and completed in the log/log relations, called the

allometric dependence, often penetrating into the kinetic

evaluation methods [18, 19, 25].

Another relevant area is the study of order/disorder phe-

nomena [18, 19], acknowledging that microscopically tiny

fluctuations can be somewhat ‘‘immediately’’ amplified to

a macroscopic scale. What seems to be a purely random

event on one level can appear to be deterministically lawful

behavior on some other level. Quantum mechanics may

serve as an example where the question of measurement is

actually the eminent question of interpreting macroscopic

images of the quantum-scale events [19]. Factually, we

construct ‘‘things’’ on the basis of information; in resem-

blance we may call engines as information transducers

because they transform energy without changing itself (not

accounting on wearing).

Modeling roots applied in reaction kinetics

In solid-state reaction kinetics [25–40], it is convenient to

postulate a thought (gedenken’’) model visualizing thus the

Vertex

Edge

Face

4-rayed vertex

3-rayed vertex

Fig. 1 Building faces (blocks) available for modeling. Pentagon and

hexagon in the upper row shows the incommensurability to compose

a continuous web because of uncovered/overlapping areas (left dark).

This can only be harmonized by curving their edges or adjusting

angels (five-sided ? convex and seven-sided ? concave) or

employing asymmetrical tiles (far right). Classical symmetrical

network can only be satisfied with a collection of triangular,

tetragonal and hexagonal faces (middle) and their combinations.

For an array of equal balls and/or cubes (even when crimped), the

restrictions are faced because of a strict Euclidean dimensionality, not

found, however, in any actual images, which is often characterized (or

observed) by typical 2D cross-sections (bottom right). Irregular grain

structures (middle bottom) possess distinctive faces, which can best be

characterized by the degree of vertices (four-rayed vertex decompos-

ing to three as a spontaneous growth occurs). Some constructions

(associable, e.g., with the clustered structure of liquid water [23]) are

tiling in fivefold symmetry, which were thought for long run as

impossible to fill areas completely and regularly (middle right). Upper
right is shown dodecahedron (which Plato associated with firmament)

interconnecting with the larger clusters of icosahedron (which Plato

associated with water). Right and below are visualized the diamond

(Penrose) basic tiles [21, 22] with a specific shape called ‘‘rhombus,’’

where upper thick rhomb has longer diagonal equal to the ‘‘Golden

ratio’’ phi (u = 1.618034, which is related to the number 5 by

formulae (1 - H5)/2), fascinatingly, playing a crucial role in various

aspects of natural livelihood and also man-made art constructions

[20]. The thinner rhomb has his shorter diagonal equal to 1/u. Both

rhombs can be derived from a pentagon, which five diagonals match

/ and which five-side structure leaves gaps when used to be

continuously repeated in space. On the other hand, the rhombs can fill

the surface in an asymmetrical and non-repeating manner, which is

known as continuous but non-repeating structure (sometimes called

quasicrystals). On expanded tiling when covering greater areas, the

ratio of the quantity of thick rhombs to thin ones approaches u again,

and if the rhombs are marked by shadow strips, then they form the

unbroken structure (middle) where we can localize both the chains

(like polymers) and pentagons (like water clusters), where the below

connectivity map shows the molecules’ orderliness within an

icosahedron). Such a structuring can also be applied to a spatial

distribution if the two kinds of rhombohedra are assembled to form

icosahedrons matching thus the larger clusters (water again), but were

never employed in the modeling of reaction solid-state species
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feedback, which is usually separated into a sequence of

possible steps then trying to identify the slowest event,

which is considered to be the rate-determining process

[25]. Such models (among others, e.g., [14, 19, 26–42])

usually incorporate (often rather hypothetical) description

of consequent and/or concurrent processes of interfacial

chemical reactions and diffusion transport of reactants,

which governs the formation of new phase (nucleation) and

its consequent (crystal) growth. Such a modeling is often

structured within the perception of simplified geometrical

bodies, which are responsible to depict the incorporated

particles, and such visualization exemplifies the reaction

interfaces by disjointing lines. Such a derived kinetics then

depends on all such physical, chemical, and geometrical

events focused to the behavior of interface acting between

the product and the initial reactant. Accordingly the space

co-ordinates become rate-controlling elements, which cre-

ate heterogeneity consequence inevitably to be incorpo-

rated. At the moment when interfaces are created, they

should be identified with the underlying principle of defects

conveniently symbolized by a pictographic contour (bor-

derline curves) at our graphical representation (cf Fig. 1).

Hence, the mathematical description turns out to be much

more complicated because no mean measure (such as bulk

concentration and temperature) but the spot/site/defect

assessment (extent of phase interface or gradients) carries

out the most considerable information undertaking thus the

posture of true rate-controlling process/execute associable

with the reaction progress (cf. Fig. 1), not omitting the

delivery task of reaction species moving to and/or from

reaction boundary.

Early in 1950s, Smith [43, 44] already proposed a

classical approach emphasizing ‘‘normal grain growth

result for the interaction between the topological require-

ments of space-filing and the geometrical needs of surface

tension equilibrium.’’ We can distinguish that in both 2D

and 3D (dimensional) arrangements, the structure consists

of vertices joined by edges (sides), which surround faces

and in the 3D case, the faces surround cells, see Fig. 1. The

cells, faces, edges, and vertices of any cellular structure obey

the conservation law (Euler’s equation), i.e., F - E ? V =

1 (for 2D plane) and F - E - C ? V = 1 (for 3D space).

Here C, E, F, and V are, respectively, the number of cells,

edges, faces, and vertices. Moreover, the number of edges

joined to a given vertex settles its coordination number, z.

For a topologically stable structure, i.e., for those in which

the topological properties are unchanged by any small

deformation, z = 3 (for 2D) and z = 4 (for 3D), is legiti-

mate everywhere. This can be best illustrated for 2D struc-

ture by a four-rayed vertex, which will tend to be unstable

decomposing into two vertices, each of three-rays, which

process is often termed as neighbor-switching. For a 2D

structure, in which all boundaries have the same surface

tension, the equilibrium angels at a vertex are 120�. The

tetrahedral angle at 109o280 is the equilibrium angle at a

four-edged vertex in 3D having six 2D faces.

The grain growth in 2D is inevitable unless a structure

consists of an absolutely regular array of hexagons. If even

1 five-sided polygon is introduced and balanced by a

seven-sided one then the sides of the grains must become

curved to maintain 120� angles at the vertices. Grain

boundary migration then tends to occur because of the

curvature maneuver reducing boundary surface tension so

that any grain with the number of edges above six will tend

to grow because of concave sides and below six will incline

to shrink because of convex sides.

It is clear that any reaction rate, particularly at the

beginning of its ‘‘acting-ion-exchange,’’ must depend upon

the size of the solid grains which undergo transformation

(growth or dissolution). Reaction rate, r?, should thus be

inversely proportional to the particle size, r, in the form of

a certain power law: r! ¼ rDr�3, where Dr is the charac-

teristic reaction dimension, which can be allied with a

nonintegral fractal [45–48]. It is obvious that a mere use of

strict integral dimensions, typically r1 and r2, would be an

apparent oversimplification. Moreover, we have to imagine

that the initial rate is directly proportional to the extent

(true availability) of ‘‘ready-to-react’’ surface and/or

interface as well as to its coarseness (i.e., roughness as a

kind of another characteristic with a non-integral dimen-

sion, again). It seems that such a concept can be discrim-

inated as rather useful to describe the responding behavior

of a reacting object toward the reaction impact character-

ized by fractal dimension. It recounts in -self summing all

events occurring during the overall heterogeneous process.

There, however, is not a regular polyhedron with plane

sides subsisting exactly tetrahedral (angle 109o280 between

the edges). The nearest approach to space filling by a

regular plane-sided polyhedron in 3D is obtained by the

Kelvin ideal tetracaidecahedra spaced on a body-centered

cubic lattice. Even then, the boundaries must become

curved to assure equilibrium at the vertices so that a grain

growth is likely to occur. It can be even illustrated by beer

frost, which can be of two kinds: at-once draft beer with

more interfacial fluid possessions (enabling mutual bubble

slipping) and the already aged beer with a more rigid

interfacial structure (*‘‘dry’’ hexagonal-like make up).

Apparently, both are unlike in experts’ taste, being capable,

however, to self-adjust by boundary migration and gas

permeation through the cell membranes to equalize pres-

sure of adjacent bubbles.

The most common kinetic models are associated with the

shrinking core of a globular particle, which maintains a sharp

reaction boundary [26–36]. Using a simple geometrical

representation, the reacting system can be classified as a set

of spheres [18, 19] where each reaction interface is
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represented by characteristic curve. We assume that the

initial reactants’ aggregation must be reached by (assum-

ingly) well-distributed (homogenization of reacting) com-

ponents (often through various transporting means)

otherwise possibly initiating certain self-organization [18,

19]. Any of such created interfacial (separating) layers, y,

endures thus the role of a kinetic impedance, and the slower

of the two associated elementary processes, i.e., diffusion to/

from acting along with the chemical interface, then becomes

the rate-controlling process [18–42, 49–51] responsible for

the over-all reaction progression. We may indicate that that

the above discussed kind of ‘‘as-belief’’ models depict both

the ideal situation of only single-reaction controlling mode

as well as a rigid spherical representation for all reacting

particles. Though this simplification has no any investiga-

tional authorization, such a theoretical fashion sometimes

(and from time to time even routinely) provides a surpris-

ingly good fitting for thermoanalytical data kinetics ignoring

a common inspection misfit often adjusted by means of

simultaneously accomplished direct observations (such as

microscopy). Rationalized approach can be accomplished

when assuming a certain model coincidence for improved

geometrical fit incorporating thus some additional symmetry

features such as a regularity adjustment of pattern-similar-

bodies (globe $ prism $ cube $ block $ hexahedral

$ dodecahedral $ etc.). It somehow helps us to authorize

the relation truthfulness and applicability of such (oversim-

plified) models when put into operation on more cogent

(irregular) structures, which we often decline, or at least, are

anxious to observe. Even symmetry generalization does not

facilitate above modeling to the full-scale matching of real

morphologies (customarily witnessed in practice).

In our kinetic practice, we can either survive with a

simplified model-free description using a ‘‘blank’’ model-

ing pattern (as below shown SB equation) or we ought to

adapt another philosophy of modeling whichever reaction

mechanisms, learning how to employ more complex

mathematics and/or providing a range of functions instead

of single numerical values (typically activation energies

often pointlessly précised to decimal places). This tactic,

however, may auxiliary interfere within the limiting cases

of experimental setup: either by diminishing the sample

size to a certain threshold (thus being incapable of distin-

guishing the measured response of bulk behavior from that

of sample surface) or by accelerating the imposed tem-

perature changes (�/) probably getting in touch with an

effect analogous to the uncertainty principle (unable to

correspondingly determine each one of the independently

measured parameters with an adequate precision, i.e.,

temperature and/or and its change—heat flux). Therefore,

the future development of thermal analysis may become

different than that we presuppose today.

Use of yet atypical fractal geometry

Always existing perturbations on the reaction interface can

be imagined to encounter a driving force to accelerate

growth that is usually expressed by the negative value of

the first derivative of the Gibbs energy change, DG, with

respect to the distance, r. For small super-heating/cooling,

we can still adopt the concept of constancy of the first

derivatives, so that dDG equals to the product of the

entropy change, DS, and the temperature gradient, DT,

which is the difference between the thermodynamic tem-

perature gradient (associated with transformation) and the

heat-imposed gradient at the reaction interface as a con-

sequence of external and internal heat fluxes. Because

DS is often negative, a positive driving force will exist to

allow perturbations to grow, only if DT is positive. This

pseudo-thermodynamic approach gives the same result as

that deduced from the concept of zone constitutional und-

ercooling [52, 53], and its analysis is important for the

manufacturing advanced nano-materials [54–57] such as

fine-metals, nano-composed assets, formation of quantum

low-dimensional possessions (dots), composite whiskers,

tailored textured configurations, and growth of oriented

biological structures.

The physical–geometrical models also neglect other

important factors such as interfacial energy (immediate

curvature, capillarity, tensions, nano-grains radius [54–57]),

and particularly undistinguish internal and external trans-

ports of heat and mass (to and from the localized reaction

boundary) resulting in a breakdown of smooth (planar)

reacting interface [19], which, at the process terminations,

are anyhow responsible for complex product topology [52,

53]. Variously activated disturbances are often amplified

until a marked difference in the progress of the tips and

depressions of the perturbed reacting interface occurs,

making the image of resultant structures irregular and inde-

finable [19, 52–54, 58]. It creates difficulties in the correla-

tion of traditional morphology observations with anticipated

structures, becoming rather different from the originally

assumed (simple, planar, 3D, etc.) geometry. Depending on

the directional growth conditions, the so-called dendrites

(from the Greek dendros = tree) develop their arms of

various orders and trunks of different spacings because of the

locally uneven conditions of heat supply. This process is well

known in not only metallurgy (quenching and casting of

alloys [52, 53, 58], water, and weather precipitates (such as

snow-flakes formation or crystallization of water in plants)

but also for less frequent types of other precipitation, crys-

tallization, and decomposition processes associated with

dissipation of heat, fluids, etc.

First, we should notice that there are sometimes fussy

effects of particle radius, r, encompassing a wide range of

Rationale and fallacy of thermoanalytical kinetic patterns 9
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reacting compacts. Besides affecting measurable point of

phase changes [55–57], the most of the derived model

relations stay either for a simply reciprocity (*1/r, if the

whole reacting surface is exposed to ongoing chemical

events) or for the inversely proportional square (*1/r2, if

the diffusion across the changing width of reactant/product

layer became decisive). It is clear that for a real instance,

we can imagine such a situation when neither of these two

limiting cases is unfailing so that the relation 1/rn becomes

effective, and a new non-integral power exponent, n, comes

into view falling to the fractal region 1 B n B 2. It is

somehow similar to the case of heat transfer across the

layer d, which can similarly fall in between two optimal

cases limited by 1/d and 1/d2. The associated cooling rate /
is essentially influenced by the heat transfer coefficient, K,

and the thickness of cooled sample, d, and relatively less by

its actual temperature, T. At the condition of ideal cooling,

where we assume infinitely high coefficient of heat trans-

fer, the cooling rate is proportional to 1/d2, while for the

Newtonian cooling controlled by the character of phase

boundary, / correlates to 1/d, only. In practice, we may

adopt the power relation / = 1/dn (where n is a noninte-

gral experimental constant 1 B n B 2).

We can presuppose that transport properties, because of

fractal nature of percolation changes, incorporate into the

physical laws. For an enough randomly diluted system, we

can even admit that the localized modes occur for larger

reacting frequencies, which can be introduced on basis of

bizarrely called fractons [18, 59]. Inherent state density

then shows an anomalous frequency behavior and, again,

the power laws can characterize their dynamic properties.

On fractal conductors, for example, the density is propor-

tional to Ld and approaches zero for L ? ?. If we increase

L, we increase the size of the non-conducting holes, at the

same time decreasing the conductivity, r, which, because

of self-similarity, decreases on all length scales, leading to

the power law dependence defining the critical exponent, l,

as r * L-l . Owing to the presence of holes, bottlenecks,

and dandling ends, the diffusion is also slowed down on all

length scales. Assuming the common example of ‘‘random

walker’’ [60–63] and its probability to stay in place (using

the standard relation, x2(t) = 2dDt, where D is the diffu-

sion constant and d is the dimension of lattice), the clas-

sical Fick Law loses its orthodox validity. Instead, the

mean square displacement is described by more general

power law: x2 tð Þ ffi t2=dw , where the new exponent, dw, is

always greater than two. Both exponents can be related

through the Einstein relation, r = e n D/(kBT), where e and

n denote, respectively, the charge and density of mobile

particles, and kB is a rate constant. As a result, dw =

d0 - d ? 2 ? l, where d0 can be substituted by the ratio

relation, log3/log2, so that dw becomes proportional to

log5/log2, which, however, is not so easy to ascertain in the

standard integer-like cases.

It is widely shown [60–63] that many dynamic systems

can regularly produce a chaotic behavior. One set of

associated problems for us is the investigative concern in

the direction of a difference equation called logistic map-

ping obviously being the quadratic transformation, which

comes in different forms, typical succession as x ? a

x(1 - x). This name sounds a little peculiar in modern

science as its origin subsisted in economics from which it

gives us the term logistic to describe any type of a planning

process. It derives from the consideration of a whole class

of problems in which these two factors control the size of a

changing population, x varying between 0 and 1. This

population passes through a succession of generations,

labeled by the suffix n, and so we denote the population in

the nth generation by xn. There is a birth process in which

the number of populated species (nuclei, insects, and even

people) would deplete resources, and prevent survival of

them all. There is a negative depletion term proportional to

the square of the population. Putting these together, we

have the nonlinear difference equation. By defining the

iteration as xn?1 = a xn(1 - xn), we can illustrate the

process graphically upon the superimposed parabola (x2)

and straight line (x) in the interval 0 B x B 1 [18]. We can

arrive to the two types of iterations by adjusting both the

initial point, xo, and the multiplying coefficient, a. It can

either exhibit a sensitive-irregular pattern or non-sensi-

tively stable behavior. Very important phenomenon is thus

sensitivity, which either can magnify even the smallest

error or dump the larger errors, if the system is finally

localized in the stable state. This behavior is called the

sensitive dependence on initial conditions and is central to

the problematic of chaos [18, 49, 60–63], though it does not

automatically lead to disorder.

The crucial difference between the discrete logistic

system and its continuous derivative-like counterpart sub-

sists in the fact that it is plainly impossible for the

dynamics of the differential equation to behave chaotic.

The reason is that in the 1D system, no two trajectories, for

the limit Dt ? 0, can cross each other, thus typically

converging to a point or escaping to infinity, which, how-

ever, is not a general consensus in 3D system often dis-

playing chaos. These types of differential equations are the

most important tools for modeling straightforward (‘‘vec-

tor’’) processes in physics and chemistry, though, no single

particular analytic solution is regularly available. The

associated relationship can be transposable to write the

form of a common kinetic equation: da/dt % a(1 - a),

where a can be the normalized extent of chemical

conversion. Factually, this is a well-known form of Prout-

Tompkins’ self-catalyzed kinetic model [64, 65] naturally
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related to various aspects of contradictory chemical reac-

tivity. However, life in the real science is not simple and

almost in any physical–chemical system, the state cannot

be described by a single variable or equation characterized

by an integral power exponent (=1), as shown in detail in

the previous paragraph. Therefore, it was obvious that for

generalized purposes of chemical kinetics, this logistic-like

equation has got to be completed by the non-integral

exponents, m and n, as completed in the advanced form of

Šesták–Berggrenn (SB) equation [66–69] da/dt % am(1 - a)n.

The involvement of reactants (a) and products (1 - a) is

attuned to their actual chemical transience (m) and fertility

(n), which is timely adjusted by this type of power-law

[18, 19].

Yerofeevev [70] has already shown that if a solid is

involved with acting interfaces, the formation and growth of

nuclei are describable by the above SB equation with m = 2/

3 and n = 2/3. It may include certain extension and corre-

lation, for example, for: m = 1/2, 2/3, 3/4, 4/5, …, and 1:

n = 0.774, 0.7, 0.664, 0.642, …., and 0.556, respectively. It

was shown [32, 33, 66–68] that such a two-parameter model

retains its physical meaning only for m B 1 which can be

even correlated with the classical nucleation-growth equation

(often abbreviated as JMAYK) staying factually the special

case of SB equation (when approximating {ln(1 - a)}p

through expansion by am [18, 19]). The increasing value of

the exponent m indicates ‘‘mortality’’—a more important role

of the precipitated phase on the overall kinetics. It also

appears that a higher value of the second exponent (n [ 1)

indicates increasing reaction complexity; however, the

temptation to relate the values of m and n to a specific

reaction mechanism can be doubtful and should be avoided

without complementary measurements [18, 19]. Besides

Malek shown [71, 72] that there exists a relationship between

the JMAYK robust exponents r = 0 ? 1.5 ? 2 ? 3 and

SB exponents keeping on the respective values m–n =

0–1 ? 0.35–0.88 ? 0.54–0.83 ? 0.72–0.76. Nevertheless

the best interpretation depicts n and m as mere fractals

without any correlation to a reaction mechanism.

Manipulability of the kinetic equation

Chemical kinetics is based on the experimentally verified

assumption that the reaction rate r?, based on degree of

conversion a, is signified by time (t) derivative da/dt, which

is a function, f, of the state alone, i.e., da/dt % f0(a, T). The

state dynamics of a studied system is characterized by the

mean and dimensionless measure of reaction progress (a)

[18–42, 49–51]. The long-lasting practice has accredited a

routine in which the function f0(a, T) is divided into the

two mutually independent functions, k(T) and f(a). Using

this traditional postulation, the appropriate constitutional

approach to inaugurate the desired constitutive equation [73,

75] depicts a principal form of the product of two separate

functions, i.e., the rate constant k(T), dependent solely on

the temperature, T, and the mathematical portrayal-model of

the reaction mechanism, f(a), reliant on the variation of the

degree of conversion, only [18, 19, 74]. It may be compli-

cated by interference of a changing equilibrium background

in which a became a product of two kinetic k and equilib-

rium keq degrees [75] (a = k/keq). The degree of conversion

may eventually involve multiple kinetic degrees (such as

simultaneous phase separation [76] etc.) and may also

become pressure dependent, etc.

For a mathematical treatment, we have any number of

possibilities of mathematical manipulations: we can adjust

modification of either term: da/dt (*a0), f(a) or k(T). We are

all familiar that the derivative can possess only an integer

order (1,2,3…), which is a common language for formulating

and analyzing many laws of physics. In accordance with

above discussion, even the calculus of fractional derivatives

[77, 78] may become adequate to be employed for kinetic

applications (factually being an old technique selected by

Gottfried von Leibnitz already in 1695), i.e., dax/dty (explicitly

for a case of x = 1/2 it makes equal to aH(da/a) [77, 78]). It

has already affected the classically derived Fick law of dif-

fusion, showing certain exceptions, which is termed as a

strange kinetics [79]. It is based on the portrayal of a random

walker concept (see above) and on an unconventional distri-

bution of functions. In standard kinetics, however, fractional

derivatives did not come into sight as yet which does not

exclude a chance that in future a mathematically based

application would surface conquering its apparent contro-

versy embedded nowadays. Worth noting is another curiosity

associated with derivatives, which appeared when the con-

stitutive rate da/dt was incorrectly treated as a multiple of two

partial terms, i.e., temperature (da/dt)T and time (da/dt)t

dependent [2, 3, 73–75]. This implication created a long-

lasting anarchy in the scientific literature fortunately clarified

in time [18, 19, 73] though some strange commentary issues

keeps persistent until today.

A long-lasting kinetic practice employs both functions

k(T) and f(a) after their analytic implementation. Traditional

approach habitually employs the Arrhenius exponential

constant because kineticists believes [19, 80, 81] in the

exponential law of energy distribution, k(T) = A exp (-E/

RT), derived by Arrhenius for the stochastic process of

evaporation (and approved by Boltzmann statistics). How-

ever, experimentalists often think it can be proved mathe-

matically while the mathematicians believe it has been

established by observations. Parameter E is the so-called

activation energy identified as the energy barrier (or

threshold) that must be surmounted to enable the occurrence

of the bond redistribution steps required to convert reactants

to products. The pre-exponential term, or frequency factor,
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A, provides a measure of the frequency of occurrence of the

reaction situation. Although the Arrhenius equation has been

widely (and often successfully) applied to innumerable

solid-state reactions, its use factually lacks a theoretical

justification (merely acknowledged in homogeneous sys-

tems) because the energy distribution, particularly among

the immobilized constituents of crystalline reactants, may

not be adequately represented by the Maxwell–Boltzmann

equation. The interracially reacting species, however,

encompass a certain degree of freedom to adjust their energy

distribution along the surface reaction zone affecting the

energy sharing in reactive sites (reaction interfacial contact),

moreover exaggerated by strain (between the differently

juxtaposed networks), nonstoichiometry, defects, catalytic

activity of newborn sites, irreversible re-crystallization, or

perhaps even by local volatilization (if not accounting for

the thickness of such a reacting zone contoured by local heat

and mass fluxes across and along the interfaces). An alter-

native framework for this theory of solid-state decomposi-

tions [82] is available through the so-called L’vov’s [83]

congruent dissociative vaporization (CDV) mechanism.

Here the super-saturation (S) of the vapor of the low-vola-

tility component at the instant of decomposition is related

through a transfer parameter s by proportionality

(s % 0.351 log log S ? 0.017). However, this unusual

(doubly logarithmic) relationship between s and S may

become a key point in understanding the mechanism of

energy transfer in condensation (for low volatility compo-

nent distribution between reactant and product solids)

depending on the ratio characterized by the s-coefficient.

When f(a) function is routinely modeled on basis of

simplified physical–geometrical assumptions [14–19,

25–42], the direct application of the basic differential

equation is straightforward. However, the differential mode

of evaluation can even provide a better matching up with the

true experimental conditions when the actual non-uniform

heating and factual temperatures are considered. In such a

case, we ought to introduce the second derivatives, T00 and a00

leading to a more complex equation correlating a00T2/a0T0

with df(a)/da/f(a) {T2a0/T0} ? E/R. It occurs that it is almost

impossible to evaluate this relation with a satisfactory pre-

cision because of its extreme sensitivity to noise, particularly

affecting the second derivatives (as well as heat flow chan-

ges, q00, see below) A more convenient and rather popular

method of kinetic data analysis is based on expressing the

maximum value (index max) on the dependence of a0 versus

T, for which it holds, a00 = 0 = a0max {E/RTmax/Z// exp(-

E/RTmax) df(a)/da}. The result provides simple but rather

useful dependence, often called Kissinger plot (known since

1959 [84]), which in various modifications and reproves

shows the basic relation between the ratio of heating rate /
and the peak maximum temperature Tm along with the

activation energy E.

The so-called integral methods of evaluation [14, 18, 19]

have become recently more widespread. They are based on a

modified, integrated form of the function f(a), which is

determined by the following relation, gðaÞ ¼
R a

0
da=f ððaÞ

and rather intricate integration of the rate constant
R T

T0
k Tð ÞdT=/ ¼ AEð Þ=ð/RÞexp �E=RTð Þp xð Þ=x where /

is the constant heating rate applied, p(x) is an approximation

term of the temperature integral (a common target of

numerous publications [42, 85]). In many cases its value is

simplified and even neglected, which can be visualized by

simple withdrawal in front of the integral, namely: constantR
k Tð Þdt � k Tð Þ

R
dt. This mathematical handling is habit-

ually obscured within complicated mathematics but got

involved in the nonisothermal derivation mode of traditional

nucleation-growth (JMAYK) equations [76, 86, 87].

It is evident that the derivation increases discrimination

introducing, however, too high sensitivity to experimental

noise and, on contrary, the integration decreases noise

sensitivity but launches a lower indifference toward dif-

ferent f(a)-resolution (discriminability) [18, 19]. In the

history of kinetic appraisal, there appeared curiosity when

three similar but also disparate ways of evaluation seeks for

a linear correlation of the logarithmic form of kinetic

model function In g(a) either lnT, T and 1/T; all making

available a equivalent outlook for the corresponding values

of activation energies, E, evaluated from the slope of

respective plots. Such an inbuilt disparity is caused by the

different approximation of p(x) function applied differing

in the multiplication parameter, which by itself well indi-

cates a certain extent of inherent inexactness of such a kind

of kinetic evaluation. A better insight of this inquisitiveness

was provided by the use of an asymptotic expansion [88] of

a series with a dimensionless parameter replacing Eapp. It

revealed that the ln g(a) versus 1/T plot is twice as good as

that of the former two dependencies. In this way, we can

also substantiate the numerical results of several authors

who found that the plain dependence of ln g(a) versus

T yields E with an error of at least 15%, whereas the 1/

T plot can decrease this error by half .

Important practical correlations were adjusted for vari-

ously interpreted E [15, 19]. For example, a rather

sophisticated correlation provides interrelation between the

experimental activation energy, EDTA, and those for shear

viscosity, Eg, on the basis of the relative constant width of

glass formation interval, Tg (i.e., difference between the

onset and outset temperatures). It reveals a rough temper-

ature dependence of the logarithm of shear viscosity g on

the measured temperature, T, using the simple relation log

g = 11.3 ? {4.8/2.3 D(1/Tg)}(1/T - 1/Tg) [89] detailed

discussion of which is beyond the scope of this text.

The basic JMAYK equation reveals that the apparent

(overall) values of activation energies, Eapp (particularly
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being the center of interest when determined on the basis of

DTA/DSC measurements, EDTA) can be conveniently

correlated to the partial activation energies [14, 18, 19, 42,

90, 91] of nucleation, EN, growth, EG, and/or diffusion, ED

employing a simple relation Eapp = (a EN, ? ba EG)/

(a ? bd) where a and b are characteristic multiplying

constants providing that the denominator (a ? b d) equals

to the robust power exponent of the integral form of

JMAYK equation [18, 19, 71, 72], and the value b corre-

sponds to 1 or 1/2 related to the movement of growth front

controlled by either chemical reaction (1) or diffusion (1/

2). Moreover, the coefficients d and b are associable with

the nucleation velocity and the growth dimension, respec-

tively. I am proud to mention that I was the first person

pointing out such a likelihood [90], though it may become

a persuasive but often misleading tool in an effortless

interpretation of reaction mechanism.

The above evaluation quandary can be eased upon the

application of the sample controlled thermal analysis

(SCTA) method or constant rate thermal analysis (CRTA),

where it is not monitoring the constant increase of tem-

perature but the constant rate of reaction (a0 = da/

dt = constant) [92–94]. It, however, does not help in

avoiding undesired mathematical interrelation between the

pre-exponential factor A and the activation energy E in the

standard exponential law (the so-called kinetic compensa-

tion effect—KCE) [95–98]. A complementary help can be

achieved when employing simultaneous experimental

techniques such as optical microscopy [99–101] or dila-

tometry [100, 101].

Only plausible aid is introducing a novel kind of rate

constant [102] or treating the kinetics in the novel so-called

model-free or nonparametric mod of evaluation [103–106]

where the traditional functions k(T) and f(a) are replaced by

a joint function f(a, T), thus going back to the roots of

kinetic evaluations. It may avoid customary exploitation in

terms of ill-reputed and almost religious constants, mostly

linked with the activation energies that never express the

ease of reaction (to be desirably related to the reactivity as

a kind of ‘‘tolerance’’ and to the reaction mechanism as a

kind of ‘‘annexation’’).

In conclusion, I would like to draw attention to yet other

outstanding issues that we outlined 40 years ago when

interpreting a compositional case of a measured DTA peak

assuming the inherent effect of heat inertia [107–110] (i.e.,

the term dDTDTA/dt which is a standard part of the DTA

and/or heat-flux-DSC equation [14, 19, 107, 108, 110]).

Such an expediency rather of great importance has

remained overlooked in most books [30, 31, 112–114]

(with few exceptions [18, 19, 115]). Our recent studies

[111] indicate that this feature is not a fiction but bears a

true consequential impact arising from the real process of

heat transfer (q) which has the greatest impact for moments

where the heat flux is immediately changed (�q00). Our

numerical stimulations [111] show that the heat inertia

effect is even amplified because of such temperature gra-

dients affecting thus the shape of corrected DTA peak.

Associated mistakenness is not reduced by shrinking the

sample size to micro-level [111]. It is questionable whether

such difference between the measured (as-determined) and

authentic (as-rectified) DTA peak impinges on the sup-

plementary derived data especially when calculating the

reaction progress (a) from the enveloped peak areas and/or

on the kinetic data evaluated from the shift of peak apexes

[84] or fractionally determined at successive a’s. It is an

open sphere for further examination and DTA evaluation

scrutiny together with hidden and yet unidentified prob-

lems [111] brought about by lessening the sample micro-

size [19, 55–57] and escalating the employed heating/

cooling rates [19, 52–54].
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71. Málek J. Crystallization kinetics by thermal analysis. J Therm

Anal Calorim. 1999;56:763–9.
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73. Šesták J, Kratochvil. Rational approach to thermodynamic

processes and constitutive equations in kinetics. J Therm Anal.

1973;5:193–201.
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75. Holba P, Šesták J. Kinetics with regard to the equilibrium of

processes studied by non-isothermal techniques. Zeit physik

Chem NF. 1972;80:1–20.
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1976;29:83–8. (in Czech).
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